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Abstract 27 

We examined trends in abundance of four pelagic fish species (delta smelt, longfin smelt, 28 

striped bass, and threadfin shad) in the upper San Francisco Estuary (California, USA) over 40 29 

years using Bayesian change-point models. Change-point models identify times of abrupt or 30 

unusual changes in absolute abundance (step changes) or in rates of change in abundance 31 

(trend changes). We coupled Bayesian model selection with linear regression splines to 32 

identify biotic or abiotic covariates with the strongest associations with abundances of each 33 

species. We then re-fitted change-point models conditional on the selected covariates to 34 

explore whether those covariates could explain statistically trends or change-points in species 35 

abundances. We also fitted a multi-species change-point model that identified change-points 36 

common to all species. All models included hierarchical structures to model data uncertainties, 37 

including observation errors and missing covariate values. There were step declines in 38 

abundances of all four species in the early 2000s, with a likely common decline in 2002. 39 

Abiotic variables, including water clarity, position of the 2 psu isohaline (X2), and the volume 40 

of freshwater exported from the estuary, explained some variation in species’ abundances over 41 

the time-series, but no selected covariates could explain statistically the post-2000 change-42 

points for any species.  43 

Keywords: Hierarchical Bayes, change-point, Sacramento-San Joaquin Delta, delta smelt, 44 

longfin smelt, striped bass, threadfin shad, upper San Francisco Estuary. 45 

46 
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Introduction 47 

Declines in ecological condition across large areas are increasingly common around the 48 

world (e.g. Sala et al. 2001; Palmer et al. 2008; Cunningham et al. 2009), reflecting the 49 

increase in scope and intensity of human land use during the past century. The condition of 50 

estuaries has declined as a result of changing levels of terrestrial, freshwater, and marine 51 

stressors, including toxicants, nutrient enrichment, reduction of freshwater inputs, commercial 52 

and recreational harvest, dredging, and invasions of non-native species (Lotze et al. 2006). The 53 

San Francisco Estuary (California, U.S.A.) experiences all of these stressors, and populations 54 

of many aquatic species have declined since intensive human activities began in the mid 1800s 55 

(Bennett and Moyle 1996, Brown and Moyle 2005).  56 

The San Francisco Estuary is the largest estuary on the Pacific coast of North America 57 

and consists of four major regions: San Francisco Bay, the most seaward region; San Pablo 58 

Bay and Suisun Bay, two intermediate brackish regions; and the generally freshwater 59 

Sacramento-San Joaquin Delta (Delta) (Fig. 1). The Delta is at the core of a massive system of 60 

dams and canals that store and divert water from the estuary for agricultural, industrial, and 61 

domestic use in central and southern California (Nichols et al. 1986). The water diversion 62 

facilities export c. 30% of the freshwater flow into the Delta on average, although that 63 

percentage has exceeded 60% during many recent summers (Kimmerer 2004). 64 

 The social, economic, and ecological effects of freshwater flows and diversions 65 

throughout the San Francisco Estuary have received tremendous attention. About 25 million 66 

Californians and 12,000 km2 of agricultural land rely on water diversions from the Delta. 67 

Annual agricultural revenue from California’s Central Valley, which accounts for about half of 68 

the production of fruits and vegetables in the United States, frequently approaches $15 billion. 69 

Regulations on water diversions, including standards for the position of the 2 psu (practical 70 

salinity units) isohaline (a measure of the physical response of the estuary to freshwater flow; 71 

Jassby et al. 1995), locally termed X2, have become increasingly stringent. 72 
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Conflicts over water management in the Delta have intensified because of the 73 

apparently precipitous decline in abundance of four species of pelagic fish [delta smelt 74 

(Hypomesus transpacificus), longfin smelt (Spirinchus thaleichthys), striped bass (Morone 75 

saxatilis), and threadfin shad (Dorosoma petenense)] since c. 2000 (Sommer et al. 2007). Delta 76 

smelt was listed as threatened under the U.S. and California Endangered Species Acts in 1993 77 

and the listing was revised to endangered under the California act in 2009. Recent litigation to 78 

protect the species resulted in court orders to halt water diversions temporarily (Wanger 2007a, 79 

b). Longfin smelt was listed as threatened under the California Endangered Species Act in 80 

2009 and was proposed but declined for federal listing.  81 

Analyses of existing data and new field investigations have identified various factors 82 

that may help to explain the declines, but the relative importance of these factors, particularly 83 

water diversions, is unclear (Sommer et al. 2007). Identification of the processes causing 84 

declines, and their relative effects, is critical because the solutions under consideration include 85 

major investments in infrastructure, changes in water management, and rehabilitation of 86 

species’ habitats that collectively will cost billions of dollars. Although an experimental 87 

evaluation of potential drivers is impossible for a system of this size, multi-decadal sets of data 88 

exist on abundances of pelagic fishes and biotic and abiotic characteristics of their 89 

environment, allowing for a robust correlative analysis.  90 

There is interest in determining whether the recent declines in species’ abundances are 91 

the continuation of longer-term trends or more abrupt changes in population dynamics (Manly 92 

and Chotkowski 2006), which we refer to as ecological “change-points” (Beckage et al. 2007). 93 

If the latter, identifying when these changes occurred, and if and when similar changes have 94 

occurred previously, is an important step towards understanding their causes and possible 95 

mitigation. We define a change-point as a point in time when an abrupt change occurred in the 96 

functional relationship between the mean abundance of a species and time. A change-point 97 
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may be either a step change, which is an abrupt change in abundance; a trend change, which is 98 

an abrupt change in the temporal trend in abundance; or both.  99 

There have been previous attempts to explore abrupt shifts in abundance trends of 100 

pelagic fish species in San Francisco Estuary. Manly (2005a, b) used log-linear models to 101 

examine whether a presumed step change in 2002 was statistically significant for several 102 

species, including the four we consider here. Manly and Chotkowski (2006) used a bootstrap 103 

approach to explore the timing of one or more change-points in the abundance of delta smelt. 104 

No method has been applied to detect objectively multiple change-points for all four species, 105 

whether individually or as a group. Neither has there been a rigorous examination of factors 106 

that might explain statistically specific change-points. 107 

Here, we characterize abundance trends of delta smelt, longfin smelt, striped bass, and 108 

threadfin shad over the period of record (1967 to 2007), identify change-points for species 109 

individually and collectively, and examine whether biotic and abiotic covariates are related to 110 

those trends or change-points. To identify statistically the number, timing, and magnitude of 111 

any changes in abundance trajectories, and to integrate uncertainties into parameter estimates 112 

and inference, we constructed models based on Bayesian change-point techniques (Beckage et 113 

al. 2007). We used hierarchical model structures to separate explicitly observation error from 114 

natural process variation, to handle missing data, and to fit a multi-species change-point model. 115 

Hierarchical Bayesian models are ideally suited to the complexity of analysing ecological time-116 

series (Webb and King 2009) because they can integrate multiple sources of information and 117 

uncertainty to provide more robust inferences about parameters and processes of interest 118 

(Cressie et al. 2009).  119 

 120 

Biological background 121 

Delta smelt are endemic to the San Francisco Estuary. They reach 60-70 mm standard length 122 

(SL), feeding throughout their life on mesozooplankton (Bennett 2005). Delta smelt are weakly 123 
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anadromous. Upstream migration begins in mid-December and spawning occurs from March 124 

through May in freshwater. Most delta smelt spawn 12 to 15 months after birth. A small 125 

percentage live 2 years, possibly spawning in one or both years (Bennett 2005). Young delta 126 

smelt move downstream in early summer and remain in the low-salinity zone (0.5-10 on 127 

practical salinity scale) until they migrate for spawning.  128 

 Longfin smelt also are native to the San Francisco Estuary. Longfin smelt reach 90-110 129 

mm SL with a maximum size of 120-150 mm SL (Moyle 2002; Rosenfield and Baxter 2007). 130 

Longfin smelt are anadromous. They spawn at age-2 in freshwater in the Delta from 131 

approximately December to April. Young longfin smelt occur from the low-salinity zone 132 

seaward throughout the estuary and into the coastal ocean. Longfin smelt feed on copepods as 133 

larvae and primarily on mysids as juveniles and adults. 134 

 Striped bass was deliberately introduced to the Delta from the east coast of the United 135 

States in 1879, and now supports a popular sport fishery (Moyle 2002). Striped bass is a large 136 

(> 1 m), long-lived (> 10 years) anadromous species. Females begin to spawn at age-4 in the 137 

Sacramento River, and to a lesser extent in the San Joaquin River, from April through June. 138 

Their semi-buoyant eggs hatch as they drift with the current. The larvae drift into the low-139 

salinity zone where they grow, later dispersing throughout the estuary. Adults occur throughout 140 

the estuary to the coastal ocean, except during spawning migrations. Age-0 striped bass feed 141 

mainly on copepods, later switching to macroinvertebrates and then to fish.  142 

 Threadfin shad was introduced into California reservoirs as a forage fish in 1954 and 143 

eventually spread to the Delta (Moyle 2002). Adult threadfin shad are typically <100 mm total 144 

length and primarily inhabit freshwater. They switch between filter-feeding and particle 145 

feeding, consuming phytoplankton, zooplankton, and detritus. Most threadfin shad spawn in 146 

their second summer of life, although some may spawn at the end of their first year. Spawning 147 

occurs mainly in June and July. Threadfin shad is the most abundant pelagic fish in the upper 148 

San Francisco Estuary and is important as prey for piscivorous species.  149 
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Statistical analyses 150 

We used a Bayesian framework to fit a series of log-linear models to explore temporal patterns 151 

in species abundances and relationships with biotic and abiotic covariates. First, we used 152 

piecewise regression models (Denison et al. 1998, Fernhead 2006) to characterize temporal 153 

trends in abundance of each species and to identify change-points in either the absolute 154 

abundance (step changes) or in the rate of change in abundance (trend changes). Next, we used 155 

Bayesian model selection (Green 1995) to identify covariates with the strongest associations 156 

with abundances of each species. We then fitted change-point models conditional on the 157 

selected variables to explore whether those covariates could account statistically for changes 158 

detected by the trend model, or lead to detection of other change-points. We also fitted a multi-159 

species change-point model to determine whether there were years in which all species 160 

collectively experienced abrupt changes in abundance not explained by the selected covariates.  161 

 162 

Hierarchical log-linear trend models 163 

For each species, we fitted a log-linear trend model using piecewise linear splines (Denison et 164 

al. 1998) that allow for changes in the intercept or slope parameters at particular times (i.e. 165 

change-points). We used a hierarchical model to account explicitly for sampling error. For each 166 

species, the observations (yt) were the mean number of individuals captured during autumn 167 

trawl surveys conducted each year from 1967 to 2007 (Stevens and Miller 1983). The mean for 168 

each year was based on monthly (September, October, November, December) samples from 169 

100 different locations; thus, the yearly average was based on c. 400 observations (data and 170 

station details available at http://knb.ecoinformatics.org/knb/metacat/nceas.958.8/nceas/). We 171 

assumed that the observations were unbiased estimates of the true mean abundance (nt) in a 172 

standard trawl sample over the four-month period in year t and that the 100 sampling stations 173 

are an adequate spatial representation of the estuary. The resulting hierarchical model for 174 

observations and true abundances was: 175 
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Simultaneously estimating observation noise, σOt , and process variation, σp, is difficult for 177 

such hierarchical models (e.g. Dennis et al., 2006). Therefore, we substituted the observed 178 

standard errors of trawl samples as estimates of σOt in the fitting procedure.  179 

The parameters of the state process model, αt and ft(t) in equation (2), allowed for 180 

abrupt changes in the (log) abundances and changes in the relationship between abundance and 181 

time, respectively. The following submodel accounted for abrupt changes to the intercept, or 182 

step changes: 183 

α t = α1 + χ j
j=1

kα

∑ I(t ≥ δ j )        (3) 184 

In this submodel, α1 is the initial log abundance of a given species, kα is the number of step 185 

changes in abundance, δj is the timing of the jth step change, and χj is the value of the change. 186 

I(t ≥ δj) is an indicator function that equals 1 when t ≥ δj and is 0 otherwise. To illustrate, we 187 

present an example of the state process model (2) fitted to abundance data with a single step 188 

change and constant linear trend (Fig. 2a).  189 

We modeled the temporal trend, ft(t), as a piecewise linear regression with an unknown 190 

number kβ of changes in slope (trend changes) and a corresponding set of times θj of trend 191 

changes, or “knots” (Harrell 2001).  192 
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The term (t-θj)+ equals I(t ≥ θj)(t-θj). Given a particular intercept, the term )(tf t  is a piecewise 194 

linear and continuous function of time, but when the intercept αt varies, the combination 195 

αt+ )(1 tf is a discontinuous piecewise linear model (Fig. 2b).  196 
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Given uncertainty about when or if step or trend changes occurred, we treated the 197 

numbers, kα and kβ , and timing, δj and θj, of change-points as unknown parameters to be 198 

estimated as part of the model. We used a Bayesian framework with reversible jump Markov 199 

chain Monte Carlo sampling (MCMC, Lunn et al. 2006, 2008) to evaluate the posterior model 200 

probabilities (i.e. evidence) for all possible models, or combinations of change-points. The 201 

range of models considered possible is specified in the prior distributions, which are detailed 202 

below. The resulting posterior distributions allow for probabilistic inferences about the 203 

occurrence of change-points in particular years, accounting for uncertainties in both data and 204 

other model parameters (including magnitudes and timing of other change-points). The 205 

posterior probability that a change-point occurred in year y is the summed posterior 206 

probabilities of all models that include a change-point in year y (e.g. of all values of δ  that 207 

include y as an element). 208 

Prior distributions for parameters. 209 

In Bayesian analysis, prior distributions must be specified for the unknown parameters 210 

(Gelman et al. 2004). Our prior distributions limited the number of step and trend changes to a 211 

maximum of four each, and included the possibility of zero change-points: k~Binomial(4,0.5). 212 

This prior reflects our expectation that, in a system subjected to increasing anthropogenic 213 

influence over the period of record, there may have been multiple changes in abundance trends. 214 

The prior explicitly limits the number of change-points so the larger and more abrupt changes 215 

are highlighted (see Appendix A for further discussion of priors). The priors were 216 

uninformative with respect to the timing of change-points, with equal prior probability [p0 = 217 

(0.5×4)/39 = 0.05] of change-points in each year (Appendix A). With this prior, a posterior 218 

probability p1 > 0.14 for a change-point in year y corresponds to an odds ratio of 3, which is a 219 

threefold increase from the prior odds [p0/(1- p0)] to the posterior odds [p1/(1- p1)]. Odds ratios 220 

are measures of the evidence in the data in favor of one hypothesis (change-point in year y) 221 
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over an alternative (no change-point in year y), and values > 3 are generally considered to 222 

indicate “substantial” evidence (Jeffreys 1961). 223 

We specified normal prior distributions with zero mean and standard deviations equal 224 

to (ln ymax–ln ymin)/1.96 and 0.25×(ln ymax–ln ymin)/1.96 for the magnitude of step (χ) and rate 225 

(β) changes, respectively. These priors imply that step changes greater than the observed data 226 

range are unlikely (prior probability < 0.05) and that the greatest change in slope in one year is 227 

unlikely to be greater than one-quarter of the range of log values of the observed data. We used 228 

several uninformative prior distributions for the unknown parameters (numbers and magnitudes 229 

of change-points) to assess sensitivity to the choice of priors (Appendix A). Although absolute 230 

values of model posterior probabilities sometimes were sensitive to choice of priors, the 231 

relative probabilities, and hence inferences about change-point times, were consistent.  232 

Covariate effects 233 

We undertook a series of steps to identify biotic or abiotic variables that may explain temporal 234 

patterns in species’ abundances and to determine how those variables affected inferences about 235 

change-points. First, a set of Q (12 to 15) candidate covariates was selected for each species on 236 

the basis of previously published work and unpublished analyses (Table 1). Next, we used 237 

Bayesian model selection to identify which of the Q candidate variables had the strongest 238 

associations with variation in the (log) abundances of each species (see Variable selection 239 

model, below). We then fitted change-point models conditioned on the selected variables by 240 

replacing the trend component )(tft  in equation (2) with covariate effects fx(X). These 241 

covariate-conditioned change-point models identify abrupt changes in abundance that would 242 

not be expected given the covariate values and estimated species-covariate relationships. 243 

Changes in species’ abundance that are identified as change-points in covariate-conditioned 244 

models are unlikely to be related to the included covariates. But if the inclusion of a covariate 245 

reduces the evidence for a previously identified change-point (i.e. one identified in a trend 246 
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model or model conditioned on other covariates), then a causal relationship between that 247 

covariate and the change-point is plausible.   248 

Variable selection model 249 

The variable selection model allowed non-linear covariate effects and temporal autocorrelation. 250 

Covariates were standardized (mean 0, SD 1) prior to model fitting and missing values were 251 

assigned normal prior distributions, which were not updated during model fitting, with mean 0 252 

and SD 1. The model was: 253 
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This model has up to Q covariates with effects fitted as piecewise linear splines with kj slope 255 

parameters βj and free knots φj. If kj = 0, variable j has zero effect; if kj = 1, variable j is 256 

included as a linear effect (for xj > φj1); and if kj > 1, variable j is included as a non-linear 257 

effect. We used a categorical prior for kj such that the prior probabilities of values 0, 1, 2, and 3 258 

were 0.5, 0.3, 0.1, and 0.1, respectively. Thus, the prior probability that variable j was included 259 

in the model, Pr(kj > 0), was 0.5, and linear effects were more probable a priori than were non-260 

linear effects. The knots were assigned uniform discrete priors with 10 possible positions 261 

evenly spaced along the range of xj. 262 

The relative importance of each of the covariates in model 5 was measured by the 263 

posterior probability of inclusion for each variable, Pr(kj > 0), which is the sum of the posterior 264 

model probabilities of all models that include a particular variable. We considered Pr(kj > 0) > 265 

0.75, corresponding to an odds ratio of 3 [(0.75/0.25)/(0.5/0.5)], to be sufficient evidence to 266 

include variables in subsequent covariate-conditioned change-point models.  267 
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With all models (combinations of variables) equally probable a priori (prior Pr(kj > 0) = 268 

0.5), posterior model probabilities reflect differences in marginal likelihoods, which 269 

intrinsically penalize model complexity (Kass and Raftery 1995; Beal et al. 2005). The amount 270 

of penalty depends on the prior distributions for model parameters (more diffuse priors favor 271 

fewer model parameters, George and Foster 2000), so posterior model probabilities, hence Pr(kj 272 

> 0), can be sensitive to the choice of priors. We used a half-Cauchy prior (Gelman 2006) for 273 

the standard deviation σβ of non-zero covariate effects, scaled so that c. 90% of the resulting 274 

prior probability mass of each linear coefficient βjm was in the interval (-1,1) and 95% was in 275 

the interval (-2,2). This prior placed most weight on more plausible coefficients (a linear 276 

coefficient of 1 equates to a 2.7-fold change in abundance for 1 SD change in the predictor) 277 

while still allowing larger effects (e2 = 7.4-fold change in abundance per 1 SD change in 278 

predictor). We also fitted models with a range of alternative prior specifications and generally 279 

obtained similar results (Appendix A). Any variables for which Pr(kj > 0) values were sensitive 280 

to priors are identified in Results. 281 

We fitted the variable selection model (equation 5) with and without the autocorrelation 282 

term ρnt-1 ,and with a conditional prior on ρ [ ρ|kQ+1=1~Normal(0, σβ
2

 ); kQ+1~Bernoulli(0.5)] 283 

testing for the importance of the autocorrelation term (i.e. treating nt-1 as a candidate predictor). 284 

Pr(kj > 0) values for covariates were largely unaffected by the treatment of ρ, so we present 285 

results only for the models that treated nt-1 as a candidate predictor. 286 

Covariate-conditioned change-point model 287 

We fitted change-point models that accounted for the effects of covariates identified as 288 

probable predictors [those with Pr(kj > 0) > 0.75] to examine whether those covariates could 289 

account for changes detected by the trend model, or detect other change-points. The covariate-290 

conditioned change-point model with q < Q covariates was: 291 



 13

nt ~ Lognormal α t + β jm (x jt − φ jm )+ + ρlog nt−1
m=1

k j
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In this model, kj had minimum value = 1 and a prior distribution given by kj = 1 + κj, where 293 

κj~Binomial(3,0.3), the first knot φj1 was fixed at min(xj), and remaining knots had continuous 294 

uniform priors. The autocorrelation term was included only if results of the variable selection 295 

model indicated that ρ probably was non-zero (i.e. when Pr(kQ+1=1)>0.75) [n.b. we confirmed 296 

that including ρ when Pr(kQ+1=1) < 0.75 had no effect on other parameters in equation 6]. 297 

In equation (6), the covariate effects ∑∑
= =

−
q

j

k

m
mjtjm

j

x
1 1

)( φβ  replace the trend component 298 

ft(t) in equation (2). Including step change(s) in the intercept allowed for abrupt changes in 299 

abundance conditional on the covariates, that is, changes that would not be expected given the 300 

covariate values and estimated species-covariate relationships (Fig. 2c). If a step change in nt 301 

was explained by a step change in the covariate, then the model intercept would remain 302 

constant (i.e. no change-point, Fig. 2d).  303 

Multi-species model 304 

We searched for common change-points among species by fitting covariate-conditioned 305 

change-point models [equation (6)] for all species simultaneously, with an additional step 306 

change submodel that was common to all species. In the multi-species model, the time-307 

dependent intercept for species s, αst, was modeled as: 308 

).()(
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==

  (7) 309 

Here, kCα is the number of step changes common to all four species, with magnitude and timing 310 

given by vectors ψ and ζ, respectively. The other parameters in equation (7) define species-311 
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specific change-points as in equation (3), with subscript s in (7) denoting species-specific 312 

parameters. The full model for each species was identical in all other respects to equation (6). 313 

The multi-species model identified any year(s) in which abundances of all species 314 

changed unexpectedly given the values of relevant covariates. We fitted the model once with 315 

prior distributions that allowed only common change-points [ksα = 0, kCα ~ Binomial(4,0.5)] 316 

and once with prior distributions that allowed both common and species-specific change-points 317 

[ksα ~ Binomial(2,0.5), kCα ~ Binomial(2,0.5)]. We also examined combinations of fewer 318 

species to determine whether results of the four-species models were overly influenced by one 319 

species. 320 

Implementation 321 

All models were estimated using the reversible jump MCMC add-on (Lunn et al. 2006, 2008) 322 

for WinBUGS v1.4 (Lunn et al. 2000) with 3 chains of 200 000 iterations each after 50 000 323 

iteration burn-in periods. MCMC mixing and convergence were established by inspection of 324 

chain histories, autocorrelation plots, and Brooks-Gelman-Rubin statistics. We used the 325 

cut() function in WinBUGS (Lunn et al. 2000) to prevent updating the prior distributions for 326 

missing values, which otherwise may be tuned to fit the model, leading to selection of 327 

covariates with many missing values as predictors. This treatment of missing values allowed all 328 

available data to be used in the analysis, rather than omitting years in which any covariate 329 

values were missing (Carrigan et al. 2007). We did not use imputation methods to estimate 330 

missing values because these methods assume values are missing at random, which generally 331 

was not the case (e.g. values for the first six years of surveys were missing for some variables). 332 

WinBUGS code for all models is available in Supplementary material. 333 

334 
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 335 

Results 336 

Overview of results relevant to recent declines 337 

The trend models identified probable step or trend changes in the early 2000s for delta smelt 338 

(trend change 2000-2002, Fig. 3A), striped bass (step decline 2002, Fig. 4A), and threadfin 339 

shad (step decline 2002, Fig. 5A). Longfin smelt abundances also declined after 2000, but this 340 

decline was modeled as a continuation of a long-term declining trend that was interrupted by 341 

sudden increases in the late 1970s and mid 1990s (Fig. 6A).  342 

The species-specific, covariate-conditioned change-point models indicated step declines 343 

in abundances (i.e. abrupt declines that could not be modeled by the included covariates) of 344 

delta smelt and longfin smelt in 2004 (Figs. 3B and 6B) and of striped bass (Fig. 5B) and 345 

threadfin shad (Fig. 6B) in 2002.  346 

In the multi-species change-point models, there was strong evidence of a common 347 

change-point in 2002, regardless whether species-specific change-points were allowed (Fig. 7). 348 

Evidence for step declines in abundance of delta smelt and longfin smelt in 2004 remained in 349 

the multi-species model that allowed species-specific change-points (Fig. 7). Similar results 350 

were obtained from multi-species models fitted with any combination of three species, so the 351 

high probability of a common change-point in 2002 is not driven by any single species.  352 

To ensure that our variable selection criterion [Pr(kj > 1) > 0.75] had not excluded 353 

variables that could explain the post-2000 declines, we refitted covariate-conditioned change-354 

point models including all variables with Pr(kj > 1) > 0.5 (i.e. variables with some evidence of 355 

effects). We also fitted models with variables that had strong effects in a multivariate 356 

autoregressive (MAR) analysis of an expert-elicited model of this system (up to 6 variables per 357 

species, see Mac Nally et al. in review for details). With one possible exception (detailed in 358 

striped bass results, below), inclusion of additional variables had no substantive effects on 359 

posterior probabilities of post-2000 change-points in single- or in multi-species models.  360 
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Water clarity emerged as a likely predictor of the abundance of delta smelt, longfin 361 

smelt, and striped bass, but the other variables with Pr(kj > 1) > 0.75 were unique to each 362 

species (Table 2). No species had more than two variables with Pr(kj > 1) > 0.75. All of the 363 

covariates with Pr(kj > 1) > 0.75 had monotonic effects, and most were modeled adequately by 364 

a single linear coefficient (kj = 1). 365 

The autocorrelation coefficient, ρ, had low probability of inclusion [low Pr(kQ+1=1)], 366 

and was close to zero when included, for all species except striped bass (Fig. 3C, 4C, 5C, 6C, 367 

Table 2). Low values of ρ may indicate that the mean abundance from September through 368 

December is poorly correlated with abundance of spawning adults in a given year.  369 

Species-specific results 370 

Delta smelt. – In the variable-selection model for delta smelt, water clarity and winter exports 371 

had high probability of inclusion [Pr(kj > 1) > 0.75)] (Fig. 3C). Both variables had negative 372 

effects (Table 2). The effect of winter exports was approximately linear, but marginal effects of 373 

water clarity were greatest at high values. The probability of inclusion for winter exports was 374 

sensitive to the prior distribution specified for linear coefficients. Priors that weighted large 375 

effect sizes (e.g. absolute linear coefficients > 0.5) more heavily yielded low Pr(kj > 0) values 376 

for winter exports. This sensitivity indicates that the data support relatively small effects of 377 

winter exports (|β| < 0.5), but models with larger export coefficients fitted the data poorly. The 378 

estimated mean linear coefficient in the step change model (β = -0.25, Table 2) implies that one 379 

standard deviation increase in volume of winter exports (= 0.62 km3) would be associated with 380 

a 22% decline (95% posterior interval = - 45% to +9%) in abundance of delta smelt, assuming 381 

other factors were constant. 382 

Evidence for change-points in the periods 1981-1983 and 2000-2002 was weaker in the 383 

covariate-conditioned model (Fig. 3B) than in the trend model (Fig, 3A), suggesting that those 384 

declines in abundance may have been associated with combined effects of increasing water 385 
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clarity and high winter exports (Fig. 8). However, there was evidence of an unexplained 386 

decline in 2004 in the single-species model (Fig. 3B), and of unexplained declines in 2002 and 387 

2004 in the multi-species model (Fig. 7A). The mean effect of winter exports was slightly less 388 

negative in the multi-species model than in the single-species model (Table 2) because the 389 

multi-species model assigned more weight to an unexplained step decline in 2002, reducing the 390 

estimated effect of high winter exports in that year. 391 

Longfin smelt. – In the variable selection model for longfin smelt, water clarity and spring X2 392 

had high probability of inclusion [Pr(kj > 1) > 0.75)]. Both variables had negative effects that 393 

were approximately linear (Fig. 6C, Table 2).  394 

The change-point model conditioned on spring X2 and water clarity indicated 395 

unexpected declines in abundance from 1989 to 1991 and in 2004 (Fig. 6B). The sharp 396 

increases in longfin smelt abundance in 1978 and 1995, identified as step increases in the trend 397 

model, were modeled as responses to sharp declines in X2 (increases in outflow; Fig. 8) in the 398 

covariate-conditioned change-point model. The estimated relationship between water clarity 399 

and longfin smelt abundance was weaker in the single species change-point model than in the 400 

multi-species change-point model (Table 2). This disparity relates mainly to differences in the 401 

way the models explained abundance from 1988 through 1992. A sharp decline in longfin 402 

abundance in that period was largely modeled as an unexplained step decline in the single-403 

species model but, when species-specific change-points were given lower prior probability in 404 

the multi-species model, that decline was partially attributed to increasing water clarity (Fig. 405 

8). If change-points were omitted, as in the variable-selection model, the water clarity effect 406 

was very strong. These results suggest that the relationship between longfin smelt abundance 407 

and water clarity, after accounting for a strong effect of spring X2, generally was weak 408 

throughout the time series, and that the strong relationship identified in the variable selection 409 

model was driven largely by data for the period 1988 through 1992. 410 

 411 
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Striped bass (age-0). – In the variable selection model for striped bass, water clarity and the 412 

autocorrelation term had Pr(kj > 1) > 0.75. Water clarity had an approximately linear negative 413 

effect (Table 2).  414 

Evidence for a step decline in striped bass abundance in 2002 was lower in the 415 

covariate-conditioned change point model (Fig. 4B) than in the trend model (Fig. 4A), and was 416 

lower still (odds ratio < 3) in a model that included the biomass of inland silverside (Menidia 417 

beryllina) (Pr(kj>0) = 0.59, Fig. 4C). These results suggest that high water clarity (Fig. 8) or 418 

biomass of inland silverside could have contributed to the 2002 step decline in striped bass 419 

abundance. However, the presence of partial autocorrelation ( 0 < ρ < 1) complicated change-420 

point detection in these log-linear models because the interpretation of α, and hence 421 

appropriate prior distributions for change-points, depends on ρ (see Appendix A). When 422 

autocorrelation was omitted from covariate-conditioned, change-point models for striped bass, 423 

regardless of the inclusion of inland silverside biomass, the posterior probability of a step 424 

change in 2002 was > 0.4 (Fig. 4B).  425 

 In all covariate-conditioned models for striped bass, relatively low water clarity in 1981 426 

accounted for the apparent step increase in abundance in that year (Fig. 4A vs 4B and 7C).  427 

Threadfin shad .– No variables had high probability of inclusion in the threadfin shad variable 428 

selection model. The highest-ranked variables, other than the autocorrelation term, were 429 

biomass of summer calanoids in the low salinity zone and winter and spring export volumes, 430 

which each had posterior probability of inclusion marginally higher than the prior probability 431 

(Fig. 5C), indicating only weak evidence of effects. However, probabilities of inclusion for 432 

winter and spring exports were sensitive to the prior distribution for the linear coefficients, and 433 

priors that put more weight on smaller coefficients yielded Pr(kj > 1) > 0.75 for both variables; 434 

no other variables showed this level of sensitivity to priors. Therefore, we included winter and 435 

spring exports in covariate-conditioned change-point models for threadfin shad. We also 436 
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included time as a covariate in the single-species model for threadfin shad because the model 437 

with export volumes alone fit too poorly (R2 = 0.33) to make meaningful inferences about 438 

change-points (i.e. unusual departures from “expected” abundance given covariate values).  439 

The estimated relationship between log abundance of threadfin shad and spring exports 440 

was similar in form and magnitude to the relationship between log abundance of delta smelt 441 

and winter exports (Table 2), and was consistent among single- and multi- species models with 442 

and without time included as a covariate. An apparent step increase in threadfin shad 443 

abundance in 1977 (Fig. 5A) was modeled as a response to low spring exports in that year (Fig. 444 

8) in the covariate conditioned models (note near-zero change-point probabilities for 1977 in 445 

Fig. 5B and 7D). The estimated relationship between winter exports and threadfin was weak in 446 

all models (Table 2), especially in the multi-species model that weighted 2002 step changes 447 

more heavily. The inclusion of summer calanoid biomass and an autoregressive term [both 448 

variables had 0.5 < Pr(k>0) < 0.75] had no effect on posterior probabilities of change-points for 449 

threadfin shad (estimated coefficients were close to zero in both cases). 450 

 451 

Discussion 452 

Different model structures, particularly models for individual species compared with multiple 453 

species, yielded somewhat different sets of the more likely change-points, but all models 454 

indicated sharp declines in abundance of delta smelt, longfin smelt, threadfin shad, and striped 455 

bass in the early 2000s. Post-2000 change-points were evident in all covariate-conditioned 456 

models for all species, indicating that the covariates identified as the strongest predictors of 457 

abundance could not explain fully the recent declines. However, there was some evidence that 458 

increasing water clarity, winter exports, and spring X2 may have contributed to post-2000 459 

declines in abundance of some species.  460 

Inferences about declines in abundance after 2000 depend partially on whether species 461 

were considered jointly or separately. When delta smelt and longfin smelt were modeled 462 
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individually, the best-supported models largely associated the 2002 decline in abundance of 463 

delta smelt with high winter exports and the 2001 decline in abundance of longfin smelt with 464 

spring X2. In these models, sharp, unexplained declines in abundance did not occur until 2004. 465 

However, in the multi-species model all four species experienced unexplained declines in 466 

2002, and the estimated effects of winter exports and spring X2 on delta smelt and longfin 467 

smelt, respectively, were moderately reduced (Table 2). A similar reduction in the estimated 468 

effect of winter exports in the multi-species model was observed for threadfin shad. The 469 

increased probability of unexplained declines in 2002 and reduced covariate effects in the 470 

multi-species model, relative to the single-species models, reflect differences in the amounts of 471 

data (evidence) used to fit the different models. Combining evidence from all species in the 472 

multi-species model strengthened the case for an unexplained (by the covariates considered) 473 

step decline in 2002 for all species, and led to a corresponding reduction in the estimated 474 

influence of variables that, in single-species models, might have explained 2002 declines for 475 

individual species. These results are consistent with a hypothesis that simultaneous, abrupt 476 

declines in abundances of multiple species are more likely to have been caused by a common, 477 

but unknown, factor than by different factors for each species (e.g. winter exports for delta 478 

smelt and threadfin shad, spring X2 for longfin smelt, another unknown factor for striped bass).   479 

The covariate-conditioned models indicated step declines in abundance of age-0 striped 480 

bass in 1987 (evident in a model without autocorrelation) and step declines of longfin smelt in 481 

1989 to 1991. These declines may be related to the effects of the introduced (c. 1987) clam 482 

Corbula amurensis, which caused an ongoing decrease of c. 60% in chlorophyll a 483 

concentration in the estuarine low-salinity zone (Alpine and Cloern 1992). There were 484 

concurrent declines in abundance of mysids and some species of copepods upon which striped 485 

bass and longfin smelt prey (Kimmerer and Orsi 1996, Orsi and Mecum 1996, Kimmerer 486 

2006). These changes in prey abundance were evident in the diets of striped bass and other fish 487 

species (Feyrer et al. 2003). Although variable-selection models did not identify prey variables 488 
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as strong predictors of fish abundances at the whole-estuary scale of this analysis, summer 489 

calanoids and mysid biomass were positively correlated with abundances of striped bass and 490 

longfin smelt (calanoids only) in a multivariate autoregressive (MAR) model of this system 491 

(see Mac Nally et al., this issue). When those prey variables were included in covariate 492 

conditioned models for striped bass, evidence for an unexplained step decline in 1987 was 493 

reduced greatly (to odds ratio < 3), supporting the prey-availability hypothesis. Conversely, the 494 

inclusion of prey biomass did not alter substantially evidence for step declines in 1989 and 495 

1991 in longfin smelt abundance.  496 

 497 

Covariate relationships and previous analyses 498 

The covariates we identified as strongly associated with pelagic fish abundance, namely X2, 499 

water clarity, and export flows, previously have been hypothesized to affect abundance. Jassby 500 

et al. (1995) and Kimmerer (2002) identified a relationship between abundances of several 501 

species of estuarine-dependent nekton and freshwater flow indexed as spring X2. An 502 

association between abundance of striped bass and X2 has been identified before, but the 503 

relationship with X2 was weaker than for longfin smelt and the relationship was affected by 504 

other factors (Jassby et al. 1995, Kimmerer 2002, Kimmerer et al. 2008). In these previous 505 

studies, X2 did not strongly affect the autumn abundance of delta smelt or threadfin shad. 506 

These results are consistent with our result that only longfin smelt had a strong (and negative) 507 

relationship with spring X2 (Table 2).  508 

The association between water clarity and abundance that we identified also is 509 

consistent with previous analyses. Water clarity can affect composition of fish assemblages in 510 

large river and estuarine systems (Blaber and Blaber 1980, Quist 2004) and can mediate 511 

predator-prey interactions (Abrahams and Kattenfeld 1997, Gregory and Levins 1998). Water 512 

clarity (measured by Secchi disc depth) has been related to distributions of several species of 513 

fish in the San Francisco Estuary. Delta smelt and striped bass, but not threadfin shad, were 514 
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most likely to occur where water was turbid during autumn (Feyrer et al. 2007). Secchi depth 515 

also explained some of the variation in distribution of delta smelt in summer (Nobriga et al. 516 

2008). Adding Secchi depth to non-linear models of distribution based on salinity improved 517 

fits substantially for delta smelt, striped bass, and longfin smelt (Kimmerer et al. 2009). These 518 

effects of water clarity on distributions may translate to effects on abundance to the extent that 519 

the fish populations are limited by the availability of habitat. Laboratory experiments and 520 

observations suggest that young delta smelt cannot feed effectively unless particles are 521 

suspended in the water column (Baskerville-Bridges et al. 2004; Mager et al. 2004).  522 

Export flows in winter and spring were negatively associated with abundance of delta 523 

smelt and threadfin shad, respectively, in our models. Previous analyses indicated that export 524 

flows can remove a substantial fraction of the delta smelt population in both winter and spring 525 

of dry years (Kimmerer 2008). Although previous analyses reported an effect of export flows 526 

on the abundance of young striped bass (Stevens et al. 1985), this effect was negligible if egg 527 

supply was taken into account (Kimmerer et al. 2001). Threadfin shad has been abundant 528 

relative to other species in freshwater zones of the Delta since monitoring began (1967). 529 

However, the proportional loss of the threadfin shad population to export operations has not 530 

been determined. Of the four species we examined, only threadfin shad occupies the freshwater 531 

portion of the Delta for its entire life cycle. The other three species move into brackish water 532 

during summer and autumn. Given that water diversions only export freshwater, threadfin shad 533 

may have been especially vulnerable to exports throughout the year.  534 

The variable-selection results suggest that, at the estuary scale, abiotic factors (water 535 

clarity, X2, exports) may have more influence on interannual variation in abundances of the 536 

four species than do biotic variables. This result is consistent with a multivariate autoregressive 537 

(MAR) analysis of an expert-elicited model of this system that included species interactions 538 

among several trophic groups as well as abiotic covariates (Mac Nally et al, this issue). In the 539 

MAR analysis, abiotic variables explained 50% more variation than did trophic interactions. 540 
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Trophic interactions were still important (Mac Nally et al., in review), but the strongest effects 541 

generally were “top-down,” with fish apparently having more influence on prey biomass than 542 

vice versa. These results suggest that targeted manipulation of abiotic variables like water 543 

clarity, freshwater flow, and water exports could be used to influence fish abundances in this 544 

system, but greater understanding of the interactions between abiotic variables and trophic 545 

interactions is required before scientifically robust management alternatives can be formulated. 546 

Identification of the factor(s) that caused the post-2000 declines remains an important 547 

challenge – attempts to reverse declines are unlikely to succeed unless the main drivers of 548 

those declines are understood. Our results confirm that the four species of pelagic fish 549 

experienced abrupt declines around 2002, and suggest that all potential drivers not considered 550 

in our analyses warrant further investigation. 551 

Strengths of hierarchical Bayesian modeling 552 

The hierarchical Bayesian modeling approach has several advantages over other approaches, 553 

such as multiple regression models (Cressie et al. 2009). The hierarchical structure allows 554 

sampling or measurement error to be separated from actual variation in underlying abundances, 555 

which can improve estimation of the underlying biological processes (Clark 2005). 556 

Hierarchical Bayesian models allow considerable flexibility in modeling of biological 557 

processes, so a wide variety of process models can be formulated and fitted within a common 558 

framework. The availability of public domain software such as WinBUGS, combined with an 559 

add-on developed by Lunn et al. (2006) for reversible jump MCMC (Green 1995), makes it 560 

increasingly feasible to fit and compare complex hierarchical models within a consistent 561 

estimation framework. We examined non-parametric trend models with change-points for step 562 

and trend changes (eq. 2), non-linear variable selection models (eq. 5), non-linear covariate 563 

models with step changes (eq. 6), and multiple-response models (eq. 7), which all included 564 

temporal autocorrelation as appropriate. Within each of these general model classes were large 565 

sets of special cases that differed with respect to the particular change-points and covariate 566 
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effects included. Many models of a given class were compared or combined for inference on 567 

the basis of marginal likelihoods, which inherently penalize model complexity. For example, 568 

the capacity to treat the number and location of “knots” (i.e. change-points) in linear splines as 569 

unknown parameters allowed the relative evidence for change-points in specific years to be 570 

evaluated by formal comparison of a very large number of possible models (all possible 571 

combinations of up to four change-points per parameter) while simultaneously estimating other 572 

parameters of interest (e.g. covariate effects) and accounting for data uncertainties (e.g. 573 

observation errors and missing covariate values). 574 

Future work 575 

Three areas of future research could help reduce uncertainty about drivers of abundance of 576 

pelagic fishes in the San Francisco Estuary. One is to pursue, in greater depth, simultaneous 577 

modeling of multiple species and interactions among species and covariates. The multiple-578 

species change-point models did not consider interactions among the four species of interest 579 

(but see Mac Nally et al. in review), and interactions among covariates were not investigated. 580 

Some preliminary work (J. R. Thomson, unpublished results) fitting Bayesian additive 581 

regression trees (BART, Chipman et al. 2008) included interactions among covariates, but 582 

initial results did not yield substantial improvements in fits, and the post-2000 declines were 583 

not modeled adequately.  584 

Another area of future work that may clarify mechanisms is to fit process models that 585 

include multiple life-history stages of the fish species using data available from surveys that 586 

complement data from autumn midwater trawl surveys used here. For example, adult delta 587 

smelt are sampled from January through April throughout the estuary with a Kodiak trawl (a 588 

surface-oriented trawl), and small juveniles are sampled from March through July in the “20-589 

mm survey” (Dege and Brown 2004). In summer, juvenile delta smelt are sampled with tow-590 

net surveys. A life history model that linked the abundances of each life stage would provide a 591 

more continuous picture of the delta smelt population and would capitalize more fully on 592 
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available data. The approach to change-point identification used here could be applied to any 593 

parameter(s) of interest (e.g. population growth parameters) within almost any model structure 594 

(Lunn et al. 2006), which may allow identification of important changes in key processes.  595 

A third potential means to elucidate drivers of abundance is to carry out formal 596 

statistical comparisons of some of the models formulated by Sommer et al. (2007) and Baxter 597 

et al. (2008) to explain declining abundances of pelagic fishes in the San Francisco Estuary. 598 

These authors considered many hypotheses for declines in abundance, including changes in 599 

stock-recruitment relationships and food webs, mortality from predation and water diversions, 600 

contaminants, and changes in the physical environment. Multiple-species models with explicit 601 

life history submodels could be used to compare the relative likelihood of these alternative 602 

hypotheses conditional on the available data. Formal model selection procedures, such as 603 

reversible jump MCMC (Green 1995), could be used to estimate posterior probabilities for the 604 

models corresponding to different hypotheses. 605 

It is possible, however, that the change-points were caused by variables that have not 606 

been measured, or have not been measured long enough to provide data useful in statistical 607 

analyses. For example, of the potentially contributing variables listed by Sommer et al. (2007, 608 

Fig. 6), only a few could be included in the models. The effects of toxic algae, for example, 609 

have only recently been measured and may have increased. Contaminants are too numerous 610 

and dispersed, and effects too sporadic and subtle, for any monitoring program to provide 611 

useful information for correlative analyses. Thus, these effects must be investigated through 612 

more detailed, mechanistic studies. 613 

614 
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Table 1 Definitions of variables used in change-point models, years for which data were available, and ranges of values for variables. 

“Candidate” indicates the species (by number) for which each covariate was included as a candidate predictor in variable selection 

models. Abbreviated names for covariates used in Figures (3C, 4C, 5C, and 6C) are shown in parentheses. The data, along with 

further details and explanations, are available at http://knb.ecoinformatics.org/knb/metacat/nceas.958.8/nceas/. See also Mac Nally 

et al (in review) Table 2. 

Variable Years (missing) Range Candidate Definition 

Response variables     

Delta smelt (Hypomesus transpacificus)1 1967–2007 (3) 0.06–4.02  Autumn (September–December) midwater trawl, average total 

catch per trawl 

Longfin smelt (Spirinchus thaleichthys)2 1967–2007 (3) 0.03–113.16  Autumn (September–December) midwater trawl, average total 

catch per trawl 

Striped bass (Morone saxatilis)3 1967–2007 (3) 0.12–59.38  Autumn (September–December) midwater trawl, average age-

0 catch per trawl 

Threadfin shad (Dorosoma petenense)4 1967–2007 (3) 1.36–31.21  Autumn (September–December) midwater trawl, average total 

catch per trawl 



 36

Covariates     

Calanoid copepods – spring 

(cal.sp) 

1972–2007 (1) 0.98–43.87 all Average biomass (mg C m-3) of calanoid copepodites and 

adults during spring (March-May) in low-salinity zone (0.5–

10 ‰) 

Calanoid copepods – summer 

(cal.s) 

1972–2007 (1) 2.93–27.62 all Average biomass (mg C m-3) of calanoid copepodites and 

adults during summer (June-September) in low-salinity zone 

(0.5–10 ‰) 

Mysids 

 

1972–2007 (0) 0.42–35.05 2,3 Average biomass of mysid shrimp (mg C m-3) in low salinity 

zone during June-September in low-salinity zone (0.5–10 ‰)  

Northern anchovy (Engraulis mordax) 

(Anchovy) 

1980–2006 (1) 0.22–490.42 1,2,3 Average catch per trawl of northern anchovy in the Bay Study 

midwater trawl (June-September) in the low salinity zone 

(0.5-10 ‰) 

“Other zooplankton” in spring 

(zoop) 

1972–2006 (0) 3.79–56.86 4 Average biomass (mg C m-3) of other zooplankton (not 

including crab and barnacle larvae, cumaceans) during spring 

(March-May) in the freshwater zone (< 0.5 ‰) 

Spring chlorophyll a (low salinity zone) 1975–2006 (0) 1.12–21.32 all Average mg chl a m-3 during spring (March-May) in low 
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(chlo.sp) salinity zone (0.5-10 ‰) 

Cyclopoid copepod Limnoithona 

tetraspina (Limno.) 

1972–2006 (0) 0–7.78 1,2,4 Average biomass (mg C m-3) of Limnoithona copepodites and 

adults during summer (June-September) in the low salinity 

zone (0.5-10 ‰) 

Inland silverside (Menidia beryllina) 

(silver.) 

1994–2006 (0) 19.88–116.54 all Average catch per seine haul of inland silverside in the U.S. 

Fish and Wildlife Service survey during July-September (for 

stations within the delta) 

Largemouth bass (Micropterus 

salmoides) (lm_bass) 

1994–2006 (0) 0.02–8.00 all Average catch per seine haul of largemouth bass in the U.S. 

Fish and Wildlife Service survey during July-September (for 

stations within the delta) 

Spring X2 (isohaline) (X2.sp) 1967–2006 (0) 48.53–91.74 1,2,3 Average March-May position of the 2 ‰ isohaline (X2) 

measured in km upstream from the Golden Gate Bridge 

Autumn X2 (isohaline) (X2.aut) 1967–2006 (0) 60.24–93.18 4 Average during September-December position of the 2 ‰ 

isohaline (X2) measured in km upstream from the Golden 

Gate Bridge 

Water clarity (clarity) 1967–2006 (0) 0.44 – 11.00 all Average Secchi depth (m) for the autumn midwater trawl 
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survey 

Winter exports (expt.w) 1967–2006 (0) 0.13–12.00 1,2,4 Total volume of water (km3) exported by the California State 

Water Project and Central Valley Project during December-

February. 

Spring exports (expt.s) 1967–2006 (0) 0.37–13.00 all Total volume of water (km3) exported by the California State 

Water Project and Central Valley Project during March-May. 

Duration of spawning window for delta 

smelt (15-20C) 

1975–2007 (0) 24 – 85 1 Number of days for which average temperature was between 

15-20 °C [range of water temperatures that best induce 

spawning by delta smelt (15 °C) and limit larval survivorship 

(20 °C)], mean of 5 continuous monitoring stations 

throughout Suisun Bay and the Sacramento–San Joaquin 

Delta 

Average summer water temperature 

(temp) 

1967–2006 (0) 20.45 – 23.65 all Average water temperature (°C), mean of 5 continuous 

stations monitoring stations throughout Suisun Bay and the 

Sacramento–San Joaquin Delta during June-September 

Winter Pacific Decadal Oscillation 1967–2007 (0) -1.90 – 1.89 2,3 December-February 
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(PDO.w) 

Summer Pacific Decadal Oscillation 

(PDO.s) 

1967–2007 (0) -1.11 – 2.52 1,2,3 June-September 

 

Striped bass egg supply (eggs) 1970-2006 (0) 0.02 – 0.40 3 Estimated striped bass egg supply, calculated as the sum of 

age-specific fecundity based on the population estimates 

generated by the California Department of Fish and Game 

Kimmerer et al. (2000) 
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Table 2. Summary of covariate effects in models of annual abundance of four species of pelagic fishes in the San Francisco Estuary. We used a 

variable selection model (5) to select covariates and included the covariates in subsequent models if their posterior probability of inclusion (Pr. in 

table 2) exceeded 0.75* (see Figures 4, 6, 8, 10 for corresponding values for all variables). Mean slope is the posterior mean of the average linear 

slope over the full range of covariate values in a piecewise linear spline model with up to 3 knots (changes in slope). All fitted splines were 

monotonic, and departures from linearity generally were moderate and are described in the “functional response” column. If the estimated 

functional response varied between single species1 and multispecies2 models both are described in “functional response.” Estimated covariate 

effects are conditional on the variable being a predictor, but incorporate uncertainties about the number and timing of change-points. R2 shows the 

relative fits of the posterior medians of the fitted values (nts in equation 6) to the observed log abundance data. Corresponding R2 values for trend 

models were delta smelt, 0.74; longfin smelt, 0.69; striped bass, 0.85; threadfin shad, 0.69. 

  Single species model1  Multispecies model2   

 Pr. Mean (SD)  95% CI  R2 Mean (SD)  95% CI  R2 Functional response 

Delta smelt  .65  .63  

water clarity 
0.81 -0.24 (0.29) (-0.85, 0.29)  -0.24 (0.26) (-0.74, 0.30)  

1: weak at values >2 SD from mean 

2: stronger at values > 1 SD 

winter exports 0.77 -0.25 (0.18) (-0.60, 0.09)  -0.22 (0.17) (-0.55, 0.11)  weaker at values < -1 SD 

Longfin smelt    .88   .85  
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spring X2 1.00 -1.25 (0.18) (-1.61, -0.88)  -1.20 (0.18) (-1.55, -0.83)  stronger at values > mean 

water clarity 0.96 -0.15 (0.43) (-1.05, 0.58)  -0.27 (0.41) (-1.14, 0.48)  stronger at values > 1 SD 

Striped bass    .88   .89  

water clarity 0.99 -0.59 (0.24) (-1.04, -0.06)  -0.57 (0.27) (-1.06, -0.03)  linear 

ρ  0.98 0.38 (0.17) (0.05, 0.69)  0.40 (0.13) (0.11, 0.66)   

Threadfin shad    .45   .46  

winter exports 
0.51* -0.14 (0.19) (-0.52, 0.25)  -0.10 (0.18) (-0.45, 0.28) 

 1 weak at values < mean  

2 linear 

spring exports 
0.59* -0.22 (0.14) (-0.50, 0.06)  -0.23 (0.14) (-0.48, 0.03) 

 1 weaker at values < -1.5 SD 

2 linear 

*Winter and spring exports were included in models for threadfin shad because probabilities of inclusion were sensitive to prior distributions on 

linear coefficients. Probabilities exceeded 0.75 under certain, more restrictive prior distributions (see main text and Appendix A) 
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Figure legends 

Fig. 1. Location and physiography of the upper San Francisco Estuary, California, USA. • 

denote sampling locations of the autumn midwater trawl surveys; arrows indicate two 

representative positions of the 2 ‰ isohaline (X2); SWP (State Water Project) and CVP 

(Central Valley Project) are locations of water exports from the estuary. 

Fig. 2. Examples of change-point models. All examples show a hypothetical time series y 

(dots) and corresponding piecewise linear models (dark lines). A: step change at time 31, 

modeled by yt = 2 -0.75I(t≥31) - 0.02t +εt. B: step change at time 21 and trend change at time 

31, modeled by yt = 2 -1I(t≥21) -0.03(t-31)I(t≥ 31)+εt. C: covariate model with step change at 

time 31, modeled by yt = 0 -0.75I(t≥31)+ 0.5xt + εt. D: covariate model with no change-points 

(change-point at time 31 in C is predicted by covariate), modeled by yt =0 + 0.5xt + εt. In C and 

D, grey lines show the time series of the covariate x. 

Fig. 3. A: Results of trend model (equation 2) for delta smelt. Fitted trend is shown as a black 

line and observed values (mean log catch per autumn trawl ± SE) as points. Intercept (αt) 

values are shown as a dashed grey line, and the trend component (ft(t)) as a solid grey line. 

Bottom panel shows posterior probabilities of step changes (black) or trend changes (grey) in 

each year for the trend model (equation 2). B: Results of covariate-conditioned change-point 

model (eq. 6) for delta smelt. Fitted values are shown as a black line, the intercept (αt) as a 

dashed grey line, and the covariate component (f(water clarity) + f(winter exports), where f() is 

a linear spline) as a solid grey line. The posterior probabilities of step changes (abrupt changes 

unexplained by covariates) for each year are shown in the bottom panel. C: Results of covariate 

selection model (eq. 5) for delta smelt. Posterior probabilities of variable inclusion (grey bars, 

right axis) and posterior mean (± 1 SE) linear coefficients (black bars, left axis) are shown for 

each candidate predictor. Refer to table 1 for explanation of covariates. Mean linear 
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coefficients were calculated as the mean slope of the fitted linear-spline model over the data 

range. In A, B, and C horizontal dashed lines show posterior probabilities corresponding to 

odds ratios of 3 (= 0.14 for change-points, = 0.75 for variable inclusion), which we consider 

substantial evidence for a change-point occurring in a year (A and B) or for a variable having 

an effect on abundance (C). In C the prior probability of inclusion (0.5) is shown as a dotted 

line.  

Fig. 4. Striped bass. Plot format as in Fig. 3. In B, the covariate component (solid grey line) 

represents f(water clarity) + ρnt-1. The grey bars in B show the posterior probabilities of 

change-points in each year if ρ = 0.  

Fig. 5. Threadfin shad. Plot format as in Fig. 3. In B, the covariate component (solid grey line) 

represents f(winter exports) + f(spring exports) and the dashed grey line represents the time-

dependent intercept αt plus a non-linear trend f(t).  

Fig. 6. Longfin smelt. Plot format as in Fig. 3. In B, the covariate component (solid grey line) 

represents f(water clarity) + f(spring X2), but f(water clarity) was near zero, and including only 

f(spring X2) results in essentially the same figure as this 6B. .  

Fig. 7. Abundance (log catch per trawl) with fitted values (solid lines, dashed lines are 95% 

credible intervals) and intercept parameters (grey solid) for delta smelt, longfin smelt, striped 

bass, and threadfin shad in the multi-species change-point model. Intercept parameter = species 

specific intercept plus common change-point parameter. Bars show posterior probabilities 

(right axis) of common (black) and species-specific (grey) change-points in each year. 

Fig. 8. Trends in covariates used in covariate-conditioned change-point models. 
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